
Finite Element GUI Algorithm Tutorial
The main idea of this simple interface and tutorial is to provide students access to analytical studies of the finite
element method and analysis. Students should be able to obtain a basic understanding of the importance of FEM
and how it works at the elementary level.
Note that while this tutorial serves as a programmatic approach to the GUI, some calculus (including linear algebra
and differential equations) is required to understand the mathematics.
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1 § Torsional Analysis of Solid Elliptical Membrane

Suppose we have the schematic diagram below and the assoicated nodes.

We first note the symmetry of the membrane and simplify the model by considering only the first quadrant.
Equation of Ellipse

(
x

a
)2 + (

y

b
)2 = 1

We segment each of the quadrant into two individual meshes: Biquadratic Quadralateral and Bilinear Triangle
Rectangular Element: Nodes[1 2 3 5 6 7 8 9 0]
Triangular Element: Nodes[3 4 12 11 10 7]

1.1 Procedure in Evaluating Element Meshes

The following demonstrates the procedure in calculating the K and F matrix for the biquadratic element.
1 Choose Ω and Φj, j = 1, 2, ..., Ne and specify the x-y coordinates (x1, y1), (x2, y2), ..., (xN , yN ) of nodal points.
2 Specify a set of Ni integration points (ξl, ηl), l = 1, 2, ..., Nl and quadrature weights for Ω
3 Calculate the values of Φj , ∂Φj/∂ξ, ∂Φj/∂η at the integration points.
4 Calculate the values of x = x(ξ, η), y = y(ξ, η) and their derivatives at the integration points.
5 Calculate the values of the Jacobian and the functions ∂ξ/∂x, ∂ξ/∂y, ∂η/∂x, ∂η/∂y
6 Compute ∂φej/∂x and ∂φej/∂y
7 Calculate the values of k, b and f
8 Using the results of steps 3 to 7, calculate the values of the integrands at the integration points and multiply each
by wi|J(ξl, ηl)|
9 Sum the numbers to obtain keij and fei

1.2 Integration

We use numerical method to determine the weights of the Gaussian Quadrature.∫ 1

−1

f(x)dx =

n∑
i=1

wif(ti)
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(n+ 1)Ln+1(t)− (2n+ 1)tLn(t) + nLn−1(t) = 0, L0(t) = 1, L1(t) = t

Ln+1(t) =
(2n+ 1)tLn(t)− nLn−1(t)

n+ 1

For all n values between 2 and 6 we have the following table

n Ln+1

2 L2(t) = 3tL1(t)−L0(t)
2 = 3t2−1

2

3 L3(t) = 5tL1(t)−2L1(t)
3 = 5t3−3t

2

4 L4(t) = 7tL1(t)−3L2(t)
4 = 35t4

8 −
15t2

4 + 3
8

5 L5(t) = 63t5

8 −
35t3

4 + 15t
8

6 L6(t) = 231t6

16 −
315t4

16 + 105t2

16 −
5
16

7 L7(t) = 429t7

16 −
693t5

16 + 315t3

16 −
35t
16

Figure 1: [-1 1] of Legendre Polynomials

Suppose f(t) = tk where k = 0, 1, . . . n∫ 1

−1

f(t)dt =

∫ 1

−1

tkdt =
1− (−1)k+1

k + 1
=

n∑
i=1

wif(ti)

Thus,

w1t
k
1 + · · ·+ wnt

k
n = 0 for k = 1, 3, . . . , 2n− 1 (1)

w1t
k
1 + · · ·+ wnt

k
n =

2

k + 1
for k = 0, 2, . . . , 2n− 2 (2)
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1.3 Torsional Properties

Physical quantities of interest, such as shear stresses and the relationship between the twisting moment, or torque,
T, and the angle of twist θ, per unit length of the shaft, can be determined as follows, once the potential function
u is known.

T = 2Gθ

∫
Ω

udΩ

The shear stresses on the elliptical cross-section are given by the following expressions:

σxz = 2Gθ
∂u

∂y
, σyz = −2Gθ

∂u

∂x

The stress function may be written as

φ = B{(x
a

)2 + (
y

b
)2 − 1)}

But since
∂2φ

∂x2
+
∂2φ

∂y2
= −2Gθ

We get that

B = −a
2b2Gθ

a2 + b2

σxz =
∂φ

∂y
=

2By

b2
σyz = −∂φ

∂x
= −2Bx

a2

T = 2Gθ

∫
Ω

udΩ = −πBab

We can also verfiy that

φ = B{(x
a

)2 + (
y

b
)2 − 1)} = φ = −a

2b2Gθ

a2 + b2
{(x
a

)2 + (
y

b
)2 − 1)}

Procedure in Calculating Torsional Rigidity

ueh =

Ne∑
j=1

uejΦ
e
j

T = 2Gθ

∫
Ω

uehdΩ

1. With ueh from part (i), multiply this with Φj for quadrilateral and triangular elements from page 198 and 204,
respectively. You could ignore the nodes on boundary since it will be zero. For simplicity, consider working
with one quadrant.

2. Use numerical integration to compute the integral similar to step 8

3. Repeat Steps 1 and 2 for the other element.

4. Sum everything from both elements.

5. Assume G and θ to be 1, multiply result from step (4) by 8 (2 from the constant term of the equation, and 4
since we have four quadrants.

6. Make sure to add node 1 three times since it’s shared by all quadrants.
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1.4 Discussion

• Maximum shear stress occurs at the extreme values, namely at a and b (as it approaches the boundary).
Furthermore, from Figure 9, we see that greater max stress occurs at the end of the minor axis of the ellipse

• Stress along the two axes of the centerlines is symmetrical due to the geometric symmetry of the membrane.
This is expected since the heaviest concentration is the middle and distributed evenly across the membrane.

2 § Stress Analysis on Rectangular Membrane

2.1 Derivation of Matrices

Evaluations of Kij

Ke
ij =

∫
Ωe

k

[
∂φi
∂x

∂φy
∂x

+
∂φi
∂y

∂φy
∂y

]
For rectangular elements

φ1(x, y) =
(x− a)(y − b)

ab

φ2(x, y) =
−x(y − b)

ab

φ3(x, y) =
xy

ab

φ4(x, y) =
−(x− a)y

ab

Evaluations of fi

fei =

∫
Ωe

fφidxdy =
1

2Ae

∫
Ωe

f(x, y)(αi + βix+ γiy)dxdy

From the Law of Conservation Energy, the strain and potential energy must be equal and opposite from each
other
S = −W = 1

2u
hT

kuh

2.2 Sample Output
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For a fine mesh, students should see the greater yield of higher stress distribution from the centroid of the membrane.
Hint: Play with the mesh size on the element slider of the GUI. What would happen if there was a slit (cut) on
the membrane?

2.3 Discussion

• The 4 by 4 matrix elementary stiffness matrix is the same for any given n.

• Stress deflection along the two axes of the centerlines is symmetrical due to the geometric symmetry of the
membrane

• Introduction of a slit on any plane causes an uneven symmetry about both axes

• Strain and potential energy derivation is consistent with the law of conservation of energy. Membrane is able
to “store” more energy as we refine better meshes

• Suppose a slit cut is on the left of the membrane, because the distribution of energy originates from the center
of the membrane, one can presume that the stress on the right is always greater than the left.

3 Thermal Analysis on Triangular Membrane

3.1 Linear Triangular Elements

uh(x, y) = a+ bx+ ct

φi(x, y) =
1

2Ae
[αi + βix+ γiy]

where

αi = xjyk − xkyj
βi = yi − yk
γi = xk − xj
Ae = α

2

3.2 Derivation of Matrices

Evaluations of Kij

Ke
ij =

∫
Ωe

k

[
∂φi
∂x

∂φy
∂x

+
∂φi
∂y

∂φy
∂y

]
since ∂φi

∂x = βi

2Ae

∂φj

∂x =
βj

2Ae

∂φi

∂x = γi
2Ae

∂φj

∂x =
γj

2Ae
We could rewrite Kij as

Ke
ij =

∫
Ωe

k

[
βi

2Ae

βj
2Ae

+
γi

2Ae

γj
2Ae

]
Suppose k was 1 for simplicity, we then have

Ke
ij =

1

2Ae × 2Ae
(βiβj + γiγj)

∫
Ωe

dxdy =
1

4Ae
(βiβj + γiγj)

Evaluations of fi

fei =

∫
Ωe

fφidxdy =
1

2Ae

∫
Ωe

f(x, y)(αi + βix+ γiy)dxdy

Again, to simplify the concepts for the GUI implementation, we set f=1 to get
fei = Ae

3
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3.3 Potential Strain Energy and Error Analysis

From the Law of Conservation Energy, the strain and potential energy must be equal and opposite from each other

S = −W = 1
2u

hT

kuh The error computation is derived using the triangle inequality

||uh − uh/2|| = ||u− uh/2||+ || − uh + uh|| ≤ ||u− uh/2||+ ||uh − uh||

The energy norm is ||uh − uh/2 ≤ chk+1|| in the order of 2

3.4 Discussion

• The 3 by 3 matrix elementary stiffness matrix is the same for both upright and inverted triangle (normal and
upside down triangle) for any given n.

• Thermal heat from a vertex to the middle of the opposite end looks the same for any vertex due to the
geometric symmetry of the membrane.

• The contour plot of the membrane should look like a dome instead of a volcano. As we refine the meshes
even more, we are more likely to detect the center node that all the lines from the vertex to the opposite end
will intersect, and that node will have most concentrated thermal.

• Membrane is able to “store” more energy as we refine better meshes.

4 Linear and Quadratic Interpolation of Continuous Function

4.1 Methods of Weighted Residual to Obtain Governing Weak Form

Consider: −(kû′)′ + bû′ + cû = f
Residual: r(û) = −(kû′)′ + bû′ + cû− f
Multiply by test function v such that v and u are in the same space (thus v also satisfies EBC) and integrate over
domain: ∫ L

0

r(û)vdx = 0→
∫ L

0

[−(kû′)′ + bû′ + cû− f ]vdx = 0

Suppose v is sufficiently smooth so that we can integrate the 1st term by parts:∫ L

0

−(kû′)′vdx = −(kû′)v|L0 +

∫ L

0

kû′v′dx

Suppose the initial boundary is zero, then u(0)=0, it follows that that v at x=0 must also be 0 and we have∫ L

0

kû′v′dx+

∫ L

0

cûvdx−
∫ L

0

fvdx− Tvv(L) = 0

4.2 Numerical Approximation: Galerkin Method in Weak Form

Let û ∼ uN =
∑N
k=1 αkφk(x), then û ∼ uN =

∑N
i=1 βiφi(x)

∫ L

0

k

(
N∑
k=1

αkφ
′
k(x)

)(
N∑
i=1

βiφ
′
i(x)

)
dx+

∫ L

0

c

(
N∑
k=1

αkφk(x)

)(
N∑
i=1

βiφi(x)

)
dx−

∫ L

0

f

(
N∑
i=1

βiφi(x)

)
dxTv

(
N∑
i=1

βiφi(L)

)
dx = 0

Let

Kkj =

∫ L

0

k(x)φ′j(x)φ′k(x)dx = Kjk
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Ckj =

∫ L

0

c(x)φj(x)φk(x)dx

fk =

∫ L

0

fφk(x)dx+ φk(L)

The final equation to solve for is

∑
i

Bi

{∑
k

(Kjk + Cjk)ak − fi

}
= 0→

{∑
k

(Kjk + Cjk)ak − fi

}
= 0∀Bi, i = 1, . . . , n

The goal is to solve for αk in Dα = f where Djk = Kjk + Cjk

4.3 Selecting Appropriate Basic Functions

Consider the following linear basis functions// ¡img src=”images/Linear.jpg” alt=””/¿// Trial functions: Un(x) =∑n
i=1 αiφi(x)

Test functions: Vn(x) =
∑n
i=1 βiXi(x)

How do we choose a φ(x) such that û satisfies the boundary conditions?

Consider using quadratic basis

Local Functions:  φeA(ξ) = − 1
2 (ξ)(1− ξ)

φeB(ξ) = 1
2 (ξ)(1 + ξ)

φeC(ξ) = (1− xi)(1 + ξ)

If we notice that x = xc + ξ h2 → ξ = 2(x−xc)
2

φeA(ξ) = −x(xC)
h

h−2x+2xC)
h

φeB(ξ) = x(xC)
h

h+2x−2xC)
h

φeC(ξ) = h−2x+2xC

h
h+2x+2xC)

h

→


φeA(ξ) = (xC−x)(xB−x)

(xC−xA)(xB−xA)

φeB(ξ) = (xA−x)(xB−x)
(xA−xC)(xB−x−C)

φeC(ξ) = (xA−x)(xC−x)
(xA−xB)(xC−xB)

Procedure: Compute Kkj =
∫ 1

0
x̄1/2φ′j x̄φ

′
j x̄dx̄ after normalization

∫ h
0

√
x̄φ′1(x̄)φ′1(x̄)dx̄

∫ h
0

√
x̄φ′1(x̄)φ′2(x̄)dx̄

∫ h
0

√
x̄φ′1(x̄)φ′3(x̄)dx̄∫ h

0

√
x̄φ′2(x̄)φ′1(x̄)dx̄

∫ h
0

√
x̄φ′2(x̄)φ′2(x̄)dx̄

∫ h
0

√
x̄φ′2(x̄)φ′3(x̄)dx̄∫ h

0

√
x̄φ′3(x̄)φ′1(x̄)dx̄

∫ h
0

√
x̄φ′3(x̄)φ′2(x̄)dx̄

∫ h
0

√
x̄φ′3(x̄)φ′3(x̄)dx̄


8



Compute Ckj = 2
∫ 1

0
φj(x̄)φk(x̄)dx̄

∫ h
0
φ1(x̄)φ1(x̄)dx̄

∫ h
0
φ1(x̄)φ2(x̄)dx̄

∫ h
0
φ1(x̄)φ3(x̄)dx̄∫ h

0
φ2(x̄)φ1(x̄)dx̄

∫ h
0
φ2(x̄)φ2(x̄)dx̄

∫ h
0
φ2(x̄)φ3(x̄)dx̄∫ h

0
φ3(x̄)φ3(x̄)dx̄

∫ h
0
φ3(x̄)φ2(x̄)dx̄

∫ h
0
φ3(x̄)φ3(x̄)dx̄


Solve for αk in (Kkj + Ckj)αk = fk → αk = (Kkj + Ckj)

−1fk Approximated Solution: û ∼ uN =
∑N
k=1 αk(x̄)

4.4 Discussion

• Approximated solution using quadratic basic function converges to the analytical solution quicker than linear
functions.

• We generally work with the weak form to minimize the residual

• In the discussion of error analysis, quadratic algorithm yields a smaller error than linear due to a larger big
O.

• The smaller the mesh, the more accurate u(x, φ) will be

5 Introduction to Serendipity and Beam Element

5.1 Steady-state Heat Transfer in a 3D Body Using Tri-Quadratic Hexahedral Finite
Element

The 27-node hexahedron is the analog of the 8-node “serendipity” quadrilateral
For example, the general formulas for the midside nodes are

Nj =
1

4
(1− ξ2)(1 + ηjη)(1 + ςjς)

Nj =
1

4
(1 + ξjξ)(1− η2)(1 + ςjς)

Nj =
1

4
(1 + ξjξ)(1 + ηjη)(1− ς2)

Hexahedral element with tri-quadratic approximation functions

N1 = 1
8 (1− ξ)(1− η)(1− ς)

N2 = 1
8 (1 + ξ)(1− η)(1− ς)

N3 = 1
8 (1 + ξ)(1 + η)(1− ς)

N4 = 1
8 (1− ξ)(1 + η)(1− ς

N5 = 1
8 (1− ξ)(1− η)(1 + ς)

N6 = 1
8 (1 + ξ)(1− η)(1 + ς)

N7 = 1
8 (1 + ξ)(1 + η)(1 + ς)

N8 = 1
8 (1− ξ)(1 + η)(1 + ς)

N9 = 1
4 (1− ξ2)(1− η)(1− ς)

N10 = 1
4 (1 + ξ)(1− η2)(1− ς)

N11 = 1
4 (1− ξ2)(1 + η)(1− ς)

N12 = 1
4 (1− ξ)(1− η2)(1− ς)

N13 = 1
4 (1 + ξ)(1− η)(1 + ς2)

N14 = 1
4 (1 + ξ)(1− η2)(1 + ς2)

N15 = 1
4 (1− ξ2)(1 + η)(1 + ς)

N16 = 1
4 (1− ξ)(1− η2)(1 + ς)
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N17 = 1
4 (1− ξ)(1− η)(1− ς2)

N18 = 1
4 (1 + ξ)(1− η2)(1− ς2)

N19 = 1
4 (1 + ξ)(1 + η)(1− ς2)

N20 = 1
4 (1− ξ)(1 + η2)(1− ς2)

N21 = 1
2 (1− ξ2)(1− η2)(1− ς)

N22 = 1
2 (1− ξ2)(1− η2)(1 + ς)

N23 = 1
2 (1− ξ2)(1− η)(1− ς2)

N24 = 1
2 (1 + ξ2)(1− η2)(1− ς2)

N25 = 1
2 (1− ξ2)(1 + η)(1− ς2)

N26 = 1
2 (1− ξ)(1− η2)(1− ς2)

N27 = (1− ξ2)(1− η2)(1− ς2)

Derivatives of Shape Functions

∂N
(e)
i

∂x
=
∂N

(e)
i

∂ξ

∂ξ

∂x
+
∂N

(e)
i

∂η

∂η

∂x
+
∂N

(e)
i

∂ς

∂ς

∂x
(3)

∂N
(e)
i

∂y
=
∂N

(e)
i

∂ξ

∂ξ

∂y
+
∂N

(e)
i

∂η

∂η

∂y
+
∂N

(e)
i

∂ς

∂ς

∂y
(4)

∂N
(e)
i

∂z
=
∂N

(e)
i

∂ξ

∂ξ

∂z
+
∂N

(e)
i

∂η

∂η

∂z
+
∂N

(e)
i

∂ς

∂ς

∂z
(5)

The infinitesimals dξ, dη and dς transform into dx, dy, and dz can be written in matrix form as dx
dy
dz

 =


∂x
∂ξ

∂x
∂η

∂x
∂ς

∂y
∂ξ

∂y
∂η

∂y
∂ς

∂z
∂ξ

∂z
∂η

∂z
∂ς


 dξ
dη
dς

 (6)

Jacobian Matrix

J =
∂(x, y, z)

∂(ξ, η, ς)
=


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ς

∂y
∂ς

∂z
∂ς

 (7)

The isoparametric definition of hexahedron element geometry is

x =

20∑
i=1

xiN
(e)
i y =

20∑
i=1

yiN
(e)
i z =

20∑
i=1

ziN
(e)
i (8)

Whenever |J | 6= 0, we can write 
∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂ς
∂x

∂ς
∂y

∂ς
∂z

 = J−1 (9)

The derivatives of Φej are obtained by the chain rule:

∂Φej
∂x

=
Φj
∂ξ

∂ξ

∂x
+

Φj
∂η

∂η

∂x
+

Φj
∂ς

∂ς

∂x
(10)

∂Φej
∂y

=
Φj
∂ξ

∂ξ

∂y
+

Φj
∂η

∂η

∂y
+

Φj
∂ς

∂ς

∂y
(11)

∂Φej
∂z

=
Φj
∂ξ

∂ξ

∂z
+

Φj
∂η

∂η

∂z
+

Φj
∂ς

∂ς

∂z
(12)

(13)

Numerical Integration Over Hexahedral, the total number of Gauss points is p3∫ 1

−1

∫ 1

−1

∫ 1

−1

F (ξ, η, ς)dξdηdς ≈
p1∑
i=1

p2∑
j=1

p3∑
k=1

wiwjwkF (ξi, ηj , ςk) (14)
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5.2 Bending of a Uniform, Homogeneous Elastic Beam (Euler-Bernoulli Theory

Strong Form:∫ L

0

{(EIw′′)′′ − q}vdx− {−(EIw′′)(L)−ML}v′(L) + {(EIw′′)(L)− vL}v(L) = 0 ∀ v s.t v(0) = 0, v′(0) = 0

Weak Form: ∫ L

0

EIw′′v′′dx−
∫ L

0

qvdx+MLv
′(L)− vLv(L) = 0 ∀ v s.t v(0) = 0, v′(0) = 0

Principal of Virtual Work ∫ L

0

EIw′′v′′dx =

∫ L

0

qvdx−MLv
′(L) + vLv(L)

But since we don’t have any applied moment of load at the supported end,our governing equation is actually∫ L

0

EIw′′v′′dx =

∫ L

0

qvdx

The simplest Bernoulli-Euler plane beam element with two end nodes has four degrees of freedom ue =
[v1θ1v2θ2]T .

Shape functions for this problem are conveniently expressed in terms of the dimensionless coordinate

ξ =
2x

h
− 1

dx

dξ
=

1

2
h

dξ

dx
=

2

h

N1(ξ) =
1

4
(1− ξ)2(2 + ξ) (15)

N2(ξ) =
h

8
(1− ξ)2(1 + ξ) (16)

N3(ξ) =
1

4
(1 + ξ)2(2 + ξ) (17)

N4(ξ) =
h

8
(1 + ξ)2(ξ − 1) (18)

(19)

Local Stiffness Matrix

Kij =

∫
e

EI
d2Ni(x)

dx2

d2Nj(x)

dx2
dx =

∫ 1

−1

EI
d2Ni(x)

dx2

d2Nj(x)

dx2

1

2
hdξ
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For a generic case with both free nodes, the matrix becomes

Ke =
EI

h3


12 6h −12 6h
6h 4h2 −6h 2h2

−12 −6h 12 −6h
6h 2h2 −6h 4h2


Local Force Vector

f
(e)
i =

∫
e

q(x)Ni(x)dx =

∫ 1

−1

q(x)Ni(x)
1

2
hdξ

For uniform load q0

f (e) =
q0he
12


6
he
6
−he


System array is defined with dimensions n x m where n is 4 (the number of degree of freedom per element) and

m is 3 (the number of elements).

5.3 Distribution of Bending Moment Along the Beam

Since moment is related to the distributed load by its second derivative, the approximate solution is

M(x) = −EI d
2w

dx2
= −EI

4∑
j=1

uej
d2Φej
dx2

5.4 Reactions at the Beam Ends

V (x) =
dM

dx
= − d

dx

(
EI

d2w

dx2

)
= −EI

4∑
i=1

uej
d3Φej
dx3
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